発表者
立川 聡清水研究室)
指導教員
清水 克哉
Title
Pressure-Induced Superconducting State of Europium Metal at Low Temperatures
Abstract

At ambient pressure, Eu is divalent(4f7, J=7/2) and possesses a strong local magnetic moment which suppresses superconductivity. Under high pressure, it is expected that Eu will become trivalent(4f6, J=0) and a weak Van Vleck paramagnet. It is a good candidate for superconductivity, in analogy with Am(5f6, J=0) metal which superconducts at 0.79 K. We present ac susceptibility and electrical resistivity measurements on Eu metal for temperatures 1.5-297 K to pressures as high as 142GPa. At approximately 80 GPa Eu becomes superconducting at Tc=1.8 K. Tc increases linearly with pressure to 2.75K at 142 GPa. Eu metal thus becomes the 53rd known elemental superconductor in the periodic table.

タイトル
低温におけるユウロピウムの圧力誘起超伝導
概要

 常圧ではEuは2価であり、強い局在磁気モーメントを持っている。それゆえ超伝導にはならない。高圧下ではEuは3価で、弱いバンブレック常磁性体になると予想される。Euに類似したAmは0.79 Kで超伝導となることから、高圧下のEuは超伝導になることが期待される。ここにEuの交流磁化率測定と電気抵抗測定の結果を示す。測定した温度範囲は1.5 Kから297 K 、圧力範囲は142 GPaまでである。約80 GPaでEuは超伝導となりTcは1.8 Kであった。Tcは圧力とともに単調に上昇し、142 GPaで2.75 Kに達した。ここにEuは、超伝導
を示すと分かった53番目の単体元素になった。

Reference(s)
[1] B. T. Matthias (private communication).
[2] For a recent version of the ‘‘Superconducting Table of Superconductivity,’’ see Ref. [3].
[3] M. Debessai, J. J. Hamlin, and J. S. Schilling, Phys. Rev. B 78, 064519 (2008).
[4] C. Probst and J. Wittig, in Handbook on the Physics and Chemistry of Rare Earths, edited by K. A. Gschneidner, Jr., and L. Eyring (North-Holland, New York, 1978) Vol. 1, Chap. 11.
[5] B. Johansson and A. Rosengren, Phys. Rev. B 11, 2836 (1975); A. Rosengren and B. Johansson, Phys. Rev. B 13, 1468 (1976).
[6] B. T. Matthias et al., Phys. Lett. A 72, 257 (1979).
[7] J.-C. Griveau et al., Phys. Rev. Lett. 94, 097002 (2005); K. T. Moore and G. van der Laan, Rev. Mod. Phys. 81, 235 (2009).
[8] B. I. Min et al., J. Magn. Magn. Mater. 59, 277 (1986).
[9] K. Takemura and K. Syassen, J. Phys. F 15, 543 (1985).
[10] J. N. Farrell and R. D. Taylor, Phys. Rev. Lett. 58, 2478 (1987).
[11] G. Wortmann et al., High Press. Res. 28, 545 (2008).
[12] J. Ro¨hler, Physica (Amsterdam) 144B, 27 (1986).
[13] F. P. Bundy and K. J. Dunn, Phys. Rev. B 24, 4136 (1981).
[14] J. S. Schilling, in High Pressure in Science and Technology, edited by C. Homan, R. K. MacCrone, and
E. Whalley, MRS Symp. Proc. No. 22 (North-Holland, Amsterdam, 1984), p. 79.
[15] Materials Preparation Center, Ames Laboratory, U.S. DOE, Ames, Iowa (http://www.mpc.ameslab.gov).
[16] J. C. Chervin et al., High Press. Res. 21, 305 (2001).
[17] A. D. Chijioke et al., J. Appl. Phys. 98, 114 905 (2005).
[18] Y. Akahama and H. Kawamura, J. Appl. Phys. 100, 043 516 (2006).
[19] K. Shimizu et al., J. Phys. Soc. Jpn. 74, 1345 (2005).
[20] T. Matsuoka et al., Phys. Rev. Lett. 100, 197003 (2008).
[21] R. A. Stager and H. G. Drickamer, Phys. Rev. 133, A830 (1964).
[22] D. B. McWhan et al., Phys. Rev. 143, 385 (1966).
[23] R. N. Shelton and A. R. Moodenbaugh, Phys. Rev. B 24, 2863 (1981).
[24] As discussed in Ref. [3], a temperature-dependent background signal has been subtracted from the susceptibility data in Fig. 2. The inset shows the raw data at 118 GPa before this background subtraction. The fact that superconductivity above 1.5 K appears at a somewhat lower pressure in resistivity than in magnetic susceptibiity measurements likely arises from uncertainties in the estimated pressure at the sample due to pressure gradients and differences in the criteria for determining the value of Tc.
[25] In all resistivity and ac susceptibility experiments on Eu, a 25 _m-thick Zr foil was placed under the table of the diamond anvil. To verify directly that the observed diamagnetic jump __0 near 2 K does not originate from superconductivity in the Zr foil, this foil was removed in a test experiment. At 84 GPa the strong 20 nV diamagnetic transition from Eu appeared, as usual, at _1:7 K, where none had been observed above 1.5 K at 75 GPa; in this configuration the Eu sample was then removed, whereupon the diamagnetic transition disappeared above 1.3 K to pressures as high as 94 GPa.
[26] J. J. Hamlin et al., Physica (Amsterdam) 451C, 82 (2007).
[27] S. Deemyad and J. S. Schilling, Phys. Rev. Lett. 91, 167001 (2003).
[28] Y. Akahama, H. Fujihisa, and H. Kawamura, Phys. Rev.Lett. 94, 195503 (2005).
[29] H. Q. Yuan et al., Science 302, 2104 (2003).